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Abstract
Equivariant de Rham cohomology is extended to the infinite-dimensional
setting of a loop subgroup acting on a loop group, using Hida supersymmetric
Fock space for the Weil algebra and Malliavin test forms on the loop group.
The Mathai–Quillen isomorphism (in the BRST formalism of Kalkman) is
defined so that the equivalence of various models of the equivariant de Rham
cohomology can be established.

PACS numbers: 02.40.−k, 02.20.Sv, 11.30.−j

1. Introduction

In this paper we show how equivariant de Rham theory may be extended to the infinite-
dimensional setting. The equivariant cohomology of a manifold M which carries an action
by a Lie group T is in principle the cohomology of M/T ; however if the action of T has
fixed points then M/T is not a manifold, and so may not have pathological cohomology. The
technique for handling this situation developed by Borel [11] is to consider (M ×E)/T where
E is contractible and T acts freely on E. It can be shown that the cohomology of (M × E)/T

does not depend on the choice of E, and that it reduces to the cohomology of M/T when the T
action is free; this motivates the definition of the equivariant cohomology as the cohomology
of (M ×E)/T . When M and T are both of finite dimension there are alternative constructions
by Weil and by Cartan of real equivariant cohomology in terms of differential forms, and an
equivariant de Rham theorem which establishes the equivalence of the two approaches. A full
account of this work may be found in the book of Guillemin and Sternberg [19].

In this paper we construct the equivariant de Rham theory for a situation in which both
the group and the manifold on which it acts are infinite dimensional, taking as manifold �(H),
the space of continuous loops in a finite-dimensional Lie group H, and as group �(T ), the
group of continuous loops in a Lie subgroup T of H [34, 35]. There are a number of different
but equivalent models of equivariant de Rham cohomology, including the Weil model, the
Cartan model and a more recent construction by Kalkman [25] of a model (which we will
refer to as the Kalkman model) which provides a direct and elegant implementation of the
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Mathai–Quillen isomorphism between the Cartan model and the Weil model and other models
of equivariant cohomology. We give in this paper an infinite-dimensional version of all of
these constructions. We stress the difference between this equivariant cohomology and the
classical equivariant cohomology of a free loop space under the natural circle action pioneered
by Witten, Atiyah and Bismut [5, 10, 51]. The stochastic case is treated by Léandre [34, 35].

The work of Kalkman [25], which is further developed by Chemla and Kalkman [12],
is inspired by the BRST quantization of certain topological theories in physics. The BRST
construction was introduced into physics by [8, 48] as a cohomological method for handling the
gauge redundancy which occurs when quantizing theories which possess symmetries. These
methods involve ‘ghosts’ and ‘antighosts’ which in physicist’s language are anticommuting
fields while more mathematically they correspond to generators of the exterior algebra over
the Lie algebra of the symmetry group and its dual. A fuller explanation of these ideas may be
found in the book of Henneaux and Teitelboim [20] and the papers of Kostant and Sternberg
[26] and Stasheff [47]. The BV quantization scheme [7, 16], which further develops the BRST
approach, allows an extension of these techniques when the gauge symmetries are reducible,
including ‘ghosts for ghosts’ which correspond to the even generators in the Weil algebra
(see section 2) [12]. Details of these constructions in the quantum mechanical setting which
corresponds to the finite-dimensional equivariant cohomology may be found in the papers of
Rogers [43, 44]. The constructions in this paper are likely to be useful in providing a more
rigorous analytic framework for BRST and BV methods in topological quantum field theories,
although constructions of actual models, and functional integral quantization, are left for later
work.

We begin, in section 2, by briefly reviewing the equivariant de Rham theory in the finite-
dimensional situation, making heavy use of the book of Guillemin and Sternberg [19]. In
section 3 we construct the Weil algebra for the loop group �(T ) and related operators, and
in section 4 we define the notion of forms and exterior calculus on the loop group �(H).
These two sections provide us with the key ingredients for the Weil model of the equivariant
cohomology, which we describe in section 5, and then in section 6 we construct the Kalkman
version [25] of the Mathai–Quillen isomorphism [39] and use this to construct further models
of the equivariant cohomology.

2. Equivariant de Rham theory

In this section we briefly review the equivariant de Rham theory for a finite-dimensional Lie
group T acting on a finite-dimensional manifold M. The key idea is that the equivariant de
Rham cohomology is the cohomology of a differential

dW

⊗
Id + Id

⊗
d

acting on the ‘basic’ elements of A
⊗

�(M) (definitions of these objects are given below)
where �(M) is the space of forms on M and A is a W ∗ algebra (definition 2.1) of T with
certain properties. Before defining these structures, we wish to point out the analogy here
with the Borel construction (M × E)/T given above. At the algebraic level A plays the role
of E, and must have properties analogous to being contractible and carrying a free T action.
The restriction to basic elements is analogous to passage to the quotient.

For the finite-dimensional Lie group T the Weil algebra is defined to be

W(t∗) := S(t∗) ⊗ �(t∗), (1)

where t is the Lie algebra of T and t∗ its dual while S and � denote the symmetric and
antisymmetric tensor algebras respectively. Let {ξa|a = 1, . . . , m} be a basis of t (with m
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being the dimension of T ) and {ηa|a = 1, . . . , m} be the dual basis of t∗. Denoting by ua the
generator ηa of S(t) and by θa the generator ηa of �(t), an element of W(t∗) consists of a sum
of terms of the form ua1⊗̂ · · · ⊗̂uak ⊗ θb1 ∧ · · · ∧ θbl where ⊗̂ and ∧ denote the symmetric
and antisymmetric tensor products respectively. The algebra W(t∗) is given a Z-grading by
endowing the generators ua, θb with degree 2 and 1 respectively. Using this grading modulo
2 gives W(t∗) the structure of a commutative super algebra.

The coadjoint representation of T on t∗ extends to an action of T on W(t∗) by
automorphisms. There is also an extension of t to a super Lie algebra t̃ which acts on
W(t∗) by superderivations. The super Lie algebra t̃ has dimension (m,m + 1); its even part
has a basis {La|a = 1, . . . , m} while the odd part has a basis {Ia|a = 1, . . . , m} ∪ {dW }.
Suppose that the structure constants f c

ab of t in the basis {ξa|a = 1, . . . , m} are defined as
usual by [ξaξb] = ∑m

c=1 f c
abξc. Then the Lie bracket of t̃ is defined by setting

[IaIb] = 0 [LaIb] =
m∑

c=1

f c
abIc [IadW ] = La

[LaLb] =
m∑

c=1

f c
abLc [LaLb] =

m∑
c=1

f c
abLc

[LadW ] = 0 and [dW dW ] = 0.

(2)

Note that, because of the graded antisymmetry of the bracket, the statement [dW dW ] = 0 is
not trivial, and means that cohomology may be defined on a space where t̃ acts.

Since the action of t̃ on W(t∗) is by superderivations, it is sufficient to specify the action
of t̃ on generators:

Iaθ
c = δc

a Iau
c = 0 Laθ

c = −
m∑

b=1

f c
abθ

b Lau
c = −

m∑
b=1

f c
abu

b

dWθc = uc − 1

2

m∑
a=1

m∑
b=1

f c
abθ

aθb dWuc = −
m∑

a=1

m∑
b=1

f c
abθ

aub.

(3)

It may be verified by direct calculation, using the Jacobi identity
m∑

i=1

(
f i

abf
j

ic + f i
bcf

j

ia + f i
caf

j

ib

) = 0,

that this does define an action of t̃. The degrees of the operators Ia, La and dW are −1, 0 and
+1 respectively.

A generalization of W(t∗) is the concept of a W ∗ algebra. The definition is given in
stages; further details may be found in [19].

Definition 2.1

(a) A T ∗ algebra is a commutative super algebra A which carries a T action ρ by
automorphisms and a t̃ action by superderivations such that

d

dt
ρ(exp(tξ))

∣∣∣∣
t=0

= Lξ , ρ(a)Lξρ(a−1) = LAdaξ ,

ρ(a)iξρ(a−1) = iAdaξ , ρ(a) dρ(a−1) = d

(4)

for all ξ in t and all a in T.
(b) A T ∗ module is a super vector space A together with a linear representation ρ of T on A

and a homomorphism t̃ → End A which satisfy (4).



11932 R Léandre and A Rogers

(c) a W ∗ algebra of T is defined to be a T ∗ algebra A which is also a W(t∗) module such
that the map

W(t∗) ⊗ A → A w × a �→ wa

is a morphism of T ∗ modules.

A W ∗ algebra A is said to be ‘of type C’ if it is acyclic and contains elements
θa, a = 1, . . . , m such that Ibθ

a = δa
b for all a, b = 1, . . . , m. An example of a W ∗

algebra of type C is W(t∗) itself.
The action of T on M induces an action of the super Lie algebra t̃ on �(M) by

superderivations: suppose that X(ξ) denotes the vector field on M corresponding to the
element ξ of t, and that IX(ξ) denotes interior differentiation along X(ξ) while LX(ξ) denotes
Lie differentiation along X(ξ). Then setting Ia to act by IX(ξa), La to act by LX(ξa) and dW by
exterior differentiation d gives the required action.

Given a W ∗ algebra A, the basic subalgebra of A
⊗

�(M), denoted by (A
⊗

�(M))bas,
is defined to be the subalgebra consisting of elements λ which satisfy(
Ia

⊗
Id + Id

⊗
Ia

)
λ = 0 and

(
La

⊗
Id + Id

⊗
La

)
λ = 0 (5)

for all a = 1, . . . , m = Dim T . The differential dW

⊗
Id + Id

⊗
d restricts to an action on

this subalgebra. The equivariant de Rham cohomology of M under the action of T is defined to
be the cohomology of (A

⊗
�(M))bas. It can be shown that this is independent of the choice

of W ∗ algebra A with property C. (While W(t∗) is the simplest example of such an algebra,
different examples are needed to prove the equivariant de Rham theorem [19] and derive the
BRST quantization for a constrained Hamiltonian system with reducible symmetries [44].)

The Weil model of the equivariant cohomology is achieved by choosing A to be W(t̃)

itself, which is a W ∗ algebra with property C. Two further models of the cohomology will
now be described, the Kalkman model and the Cartan model. To do this we need to introduce
an operator ψ which is the Kalkman extension [25] of the Mathai–Quillen isomorphism [39]
to a linear isomorphism (A

⊗
�(M)) → (A

⊗
�(M)) defined by

ψ = exp

(
m∑

a=1

θa
⊗

Ia

)
. (6)

This operator is evidently both linear and invertible. Under this operation the differential dW

transforms to

dK = ψ
(
dW

⊗
Id + Id

⊗
d
)
ψ−1

= dW

⊗
Id + Id

⊗
d +

∑
θa
⊗

La −
∑

ua
⊗

Ia (7)

and conditions (5) become(
Id
⊗

Ia

)
λ = 0 and

(
La

⊗
Id + Id

⊗
La

)
λ = 0. (8)

Here we use the fact that if [A,B] commutes with A then

eAB e−A = B − [B,A] . (9)

Now the cohomology of dK on the basic subalgebra defined by these new conditions is the
same as that of the Weil model, and so we have an alternative model of the equivariant de
Rham cohomology, the Kalkman model.

Finally we can construct the Cartan model as the cohomology of the G-invariant elements
of S(t∗)

⊗
�(M) with respect to the operator

dC = Id
⊗

d −
∑

ua
⊗

Ia. (10)
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That this model is identical to the Kalkman model follows from the observation that the
condition Id

⊗
Iaλ = 0 is satisfied only by elements of the algebra W

⊗
�(M) which are

independent of all θa .
These various de Rham models of the equivariant cohomology relate to physical models

with the so-called topological symmetry in that the BRST operators for these physical
models have been shown to correspond to the differentials in the equivariant cohomology.
Multinomials in the ghosts of the theory correspond to differential forms, and where the
symmetry is a semi-direct product of the diffeomorphism group with another group ‘ghosts
for ghosts’ emerge corresponding to the even generators of the Weil algebra [12, 44].

3. The Weil algebra of a loop group

In this section we construct the Weil algebra of the group �(T ) of free continuous loops in a
simple simply connected Lie group T of finite dimension m.

In the case of the free loop group �(T ), one may regard the complexified Lie algebra
to be the space �(tC) of finite energy free loops in the complexification tC of t, that is, the
completion of the space of smooth loops γ : S1 → tC such that the energy

I (γ ) :=
∫ 1

0
|γ (s)|2 + |γ ′(s)|2 ds (11)

is finite. (Here we are using the Killing metric on t to give a Hermitian metric on the
complexification tC of the Lie algebra. It also provides us with a Hilbert space inner product
on tC.) The Lie bracket of two loops in �(tC) is done by taking the Lie bracket in tC of the
values of the two loops in all times s.

The space �(tC) is a Hilbert space with inner product

〈γ, σ 〉 :=
∫ 1

0
〈γ (s)∗, σ (s)〉 + 〈γ ′(s)∗, σ ′(s)〉 ds. (12)

Given an orthonormal basis {ξa : a = 1, . . . , m} of t, we have an orthonormal basis{
ξT
a,i : a = 1, . . . , m, i ∈ Z

}
of �(tC) with

ξT
a,i(s) =

(
1

1 + |4πi|2
) 1

2

e2π
√−1isξa. (13)

It will be convenient to combine i and a into a single index A = (aA, iA) so that

ξT
A (s) =

(
1

1 + |4πiA|2
) 1

2

e2π
√−1iAsξaA

(14)

and the orthonormal basis is
{
ξT
A

∣∣A ∈ Ind �(t)
}

where Ind �(t) = {1, . . . , } × Z. If as before
f c

ab are the structure constants of t in the basis {ξa} then we can define

[
ξT
A ξT

B

] =
m∑

aC=1

+∞∑
iC=−∞

f aC

aAaB
δ

iC
iA+iB

ξ T
C (15)

and hence give �(tC) the structure of a Lie algebra. We write

f C
AB = f aC

aAaB
δ

iC
iA+iB

(16)

so that [
ξT
A ξT

B

] =
∑

C∈Ind �(t)

f C
ABξT

C . (17)
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Using the Killing form on t, the loop space �(tC) may be identified with the space �(t∗C)

of free finite energy loops in the dual of tC. Elements of the corresponding orthonormal basis
will be written ηA

T .
Because we are now in an infinite-dimensional setting, some technical steps are required

to handle the tensor products involved in the Weil algebra. Eventually we will obtain the
supersymmetric Hida distribution space W∞−(�(H)) as the appropriate Weil algebra for our
loop group, and show how the super extension �̃(tC) of �(tC) acts on it. We begin by
constructing the supersymmetric Fock space associated with the Hilbert space �(tC). Some
notation is required: we define two sets of multi-indices MultindT

s and MultindT
a . The set

MultindT
s consists of multi-indices

As = (
Ak1 , . . . , Ak�A s

)
, (18)

where �As denotes the number of indices in the multi-index As and each index Akr
is in

Ind �(t) so that it is of the double form Akr
= aAkr

, iAkr
with 1 � aAkr

� m and iAkr
∈ Z; the

multi-index is ordered first by aAkr
and then by iAkr

, so that aAkr
� aAkr+1

and if aAkr
= aAkr+1

then iAkr
� iAkr+1

. The set MultindT
a is defined similarly as the set of multi-indices

B a = (
Bk1, . . . , Bk�B a

)
, (19)

except that no repeated indices Bkr
are allowed. The ordering rules are the same. The

concatenation A1 s

 A2 s

of two multi-indices in MultindT
s is defined as the multi-index

consisting of all the indices in A1 s
together with all those in A2 s

, rearranged in accordance

with the ordering rules of MultindT
s . The concatenation B1 s


 B2 s
of two multi-indices in

MultindT
a is defined provided that the two multi-indices have no index in common; it is

defined to be the multi-index consisting of all the indices in B1 s
together with all those in B2 s

,

rearranged in accordance with the ordering rules of MultindT
a . Associated with a concatenation

in MultindT
a is a sign ε

B=B1
B2
which is the sign of the permutation which rearranges the string

of indices in B1 s
followed by those in B2 s

to the string of indices in B s .
Let uA = ηA

T be regarded as a generator of the bosonic Fock space of �(t∗C), and assigned
degree 2, while θA = ηA

T be regarded as a generator of the fermionic Fock space of �(t), and
assigned degree 1. We set

uAs = uAk1 ⊗̂ · · · ⊗̂u
Ak�A s θB a = θBk1 ∧ · · · ∧ θ

Bk�B a , (20)

where as before ⊗̂ denotes the symmetric and ∧ the antisymmetric tensor product. The
supersymmetric Fock space then consists of formal sums

λ =
∑

As∈MultindT
s

B a∈MultindT
a

λAs,B a
uAs ⊗ θB a , (21)

where each λAs,B a
is a complex number. For each real number r we assign weights wr(As)

and wr(B a) to the multi-indices As and B a by the formulae

wr(As) =
∏

Ak∈As

(∣∣iAk

∣∣ + 1
)r

, wr(B a) =
∏

Bk∈B a

(∣∣iBk

∣∣ + 1
)r

(22)

and define the Hilbert space norms when r > 0 by

‖λ‖−r,C =
∑

As∈MultindT
s

B a∈MultindT
a

∣∣λAs,B a

∣∣2w−r (As)w−r (B a)C
(�As+�B a), (23)
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(where C is a positive real number), giving us the weighted supersymmetric Fock space
(S(�(t)) ⊗ ∧(�(t)))−r,C . (The norms corresponding to different choices of orthonormal bases
of t are equivalent.)

Definition 3.1. The set ∪r>0,C>0(S(�(t)) ⊗ ∧(�(t)))−r,C of weighted supersymmetric Fock
spaces is called the Hida supersymmetric distribution functional space and is denoted by
(W.N.)−∞(�(t)).

We refer to [21, 22, 27, 33, 36, 37, 41] for references on white noise analysis. It will now be
shown that the space W∞−(�(H)) is an algebra.

Theorem 3.2. (W.N.)−∞(�(t)) is an algebra.

Proof. Let λ1 and λ2 be two elements of (W.N.)−∞(�(t)) with

λ1 =
∑

As∈MultindT
s

B a∈MultindT
a

λ1
As,B a

uAs ⊗ θB a

λ2 =
∑

As∈MultindT
s

B a∈MultindT
a

λ2
As,B a

uAs ⊗ θB a

(24)

so that

λ1 · λ2 =
∑

As∈MultindT
s

B a∈MultindT
a

µAs,B a
uAs ⊗ θB a , (25)

where

µAs,B a
=

∑
A1 s


A2 s
=As,B1 s


B2 s
=B s

ε
B=B1
B2

λ1
A1 s

,B1 a
λ2

A2 s
,B2 a

, (26)

and thus

‖λ1 · λ2‖2
−r,C =

∑
As∈MultindT

s

B a∈MultindT
a

∣∣µAs,B a

∣∣2w−r (As)w−r (B a)C
(�A+�B). (27)

Now, if A1 s

 A2 s

= As and B1 s

 B2 s

= B s , then

wr(As) = wr

(
A1 s

)
wr

(
A2 s

)
, �As = �A1 s

+ �A2 s
,

wr(B a) = wr

(
B1 a

)
wr

(
B2 a

)
and �B a = �B1 a

+ �B2 a
.

(28)

Hence by Jensen’s inequality∣∣µAs,B a

∣∣2 �
∑

A1 s

A2 s

=As,B1 s

B2 s

=B s

C
(�A+�B)

1

∣∣λ1
A1 s

,B1 a

∣∣2∣∣λ2
A2 s

,B2 a

∣∣2 (29)

for some positive constant C1, so that there exists a positive number C2 such that

‖λ1 · λ2‖2
−r,C �

∑
A1 s

∈MultindT
s ,A2 s

∈MultindT
s

B1 a
∈MultindT

a ,B2 a
∈MultindT

a

∣∣λ1
A1 s

,B1 a

∣∣2∣∣λ2
A2 s

,B2 a

∣∣2

× w−r

(
A1 s

)
w−r

(
A2 s

)
w−r

(
B1 a

)
w−r

(
B2 a

)
C

�A1 s
+�A2 s

+�B1 a
+�B2 a

2

= ‖λ1‖2
−r,C2

‖λ2‖2
−r,C2

(30)

which gives the result required. �
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We now define the (formal) super extension t̃ of the loop algebra �(tC) to be the algebra
with even basis {LA|A ∈ Ind �(t)}, and odd basis {LA|A ∈ Ind �(t)} ∪ {dW }. The brackets
correspond to those in (2), with the structure constants (16). The action of t̃ on supersymmetric
Fock space, and hence on W∞−(�(H)), will now be described; since the action is by
superderivation the formal action is defined by its action on generators. First, we define
the action of IA by IAθB = δB

A, IAuB = 0. Next we define the action of the Weil derivative
dW by

dWuA = −
∑

B∈Ind �(h),C∈Ind �(t)

f A
BCθBuC, and

dWθA = uA − 1

2

∑
B∈Ind �(t),C∈Ind �(t)

f A
BCθBθC.

(31)

Since LA = [IA dW ] the action of LA is determined by the action of IA and dW .
It is easily seen that IA extends continuously to W∞−(�(H)). It is also the case that the

Weil derivative dW extends to W∞−(�(H)), as will be proved in the following theorem.

Theorem 3.3. dW extends to a superderivation of degree 1 which acts continuously on
W∞−(�(H)).

Proof. With λ as in (21) we have

dWλ =
∑

As∈MultindT
s

B a∈MultindT
a

λAs,B a

(
dW(uAs ) ⊗ θB a + uAs ⊗ dW(θB a )

)

:= d(1)
W λ + d(2)

W λ. (32)

Now

dWuAs =
�As∑
j=1

uA1 ⊗̂ · · · ⊗̂ uAj−1 ⊗̂
(

−
∑
C,C ′

f
Aj

CC ′θ
C ⊗ uC ′

)
⊗̂ uAj+1 ⊗̂ · · · ⊗̂ uA�As (33)

and

dWθB a =
�B a∑
j=1

(−1)j−1θB1 ∧ · · · ∧ θBj−1 ⊗ uBj ⊗ θBj+1 · · · θB�B a

+
�B s∑
j=1

(−1)j−1θB1 ∧ · · · ∧ θBj−1 ∧
(

−1

2

∑
C,C ′

f
Bj

CC ′θ
C ∧ θC ′

)
∧ θBj+1 ∧ · · · ∧ θBs�B s . (34)

Also

‖dW(uAs ) ⊗ θB a‖−r,C �
�As∑
j=1

∑
C,C ′

C(�As+�B a+1)

j−1∏
k=1

((∣∣iAk

∣∣ + 1
)− r

2
) �As∏

k′=j+1

((∣∣iA′
k

∣∣ + 1
)− r

2
)

× ∣∣f Aj

CC ′
∣∣(|iC | + 1)−

r
2 (|iC ′ | + 1)−

r
2 w− r

2
(B a). (35)

From (15) we know that the only contributions to the sum on the right-hand side of the above
inequality occur when iC + iC ′ = iAj

. Now if n is a positive integer and r > 1 then there exists
a positive number K such that

∞∑
k=−∞

(|k| + 1)−r (|n − k| + 1)−r � K

(n + 1)r−1
, (36)



Equivariant cohomology, Fock space and loop groups 11937

and we deduce that there is a positive constant C3 such that

‖dW(uAs ) ⊗ θB a‖−r,C � KC
(�As+�B a)

3 w− r
2 +1(As)w− r

2 +1(B a) (37)

if r is sufficiently large and C3 → C when C → 0. Hence∥∥d(1)
W λ

∥∥
r,C

� K
∑

As∈MultindT
s

B a∈MultindT
a

∣∣λAs,B a

∣∣C(�As+�B a)

3 w− r
2 +1(As)w− r

2 +1(B a)

� K‖λ‖− r
2 +1,C0 (38)

for any C0 → 0 when C → 0.
We now apply the Cauchy-Schwarz inequality to obtain, for some particular integer k, the

standard result that∑
As∈MultindT

s

B a∈MultindT
a

C
(�As+�B a)

3

n∏
j=0

w− r
2 +1(As)w− r

2 +1(B a) �
( ∞∏

n=0

(
1 − C3

n
r
2 −1 + 1

)−1
)m

(39)

which is finite. (Here as before m is the dimension of the Lie group T.) Combining this with a
similar argument for d2

W we obtain the required result. �

Corollary 3.4. dW
2 = 0.

Proof. Direct calculation shows that this result is true for each generator of W∞−(�(H));
since dW is a super derivation it must hold on all of W∞−(�(H)). �

Although we do not construct any explicit examples here other than the Weil algebra
(W.N.)−∞(�(t)) itself, we remark that the concept of a W ∗ algebra with property C can be
defined in our infinite-dimensional setting.

4. Malliavin calculus on a loop group

Let us recall that if Malliavin calculus had a lot of precursors, its main novelty was to complete
for all the Lp existing differential operators [2, 6, 9, 21] using the tangent space to Wiener
space which allows integration by parts.

Gross [18] and Airault and Malliavin [1] pointed out that it is possible to do analysis on a
free loop group, because there is a tangent Hilbert space which allows integration by parts on
a free loop group, via the Albeverio–Høegh-Krohn quasi-invariance formula on a loop group
[3]. (See also [17].) The goal of this part is to recall, with some suitable modification, the
extension of analysis on a loop group due to Fang and Franchi [14, 15] and Léandre[28–32]
to include differential forms.

Let H be a compact simply connected group. Regarding the Killing form on h as a
Riemannian metric on h, we can construct Wiener measure and the associated Brownian
motion on H. This measure is classically related to the heat semigroup exp(−t�) of the
Laplacian � on H, and its heat kernel pt(x, y). The Wiener measure dµ on the free loop
group �(H) of maps from the S1 into H is characterized as follows. Let s �→ hs be a continuous
loop in the group and let fi, i = 0, . . . , n be a sequence of functions from H into R. We
consider sometimes si, 0 � s0 < s1 < · · · < sn, and introduce the cylindrical function

F(h) =
n∏

i=0

fi

(
hsi

)
. (40)
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Then∫
F(h) dµ = tr[exp(−s0�)f0 exp(−(s1 − s0)�)f1

· · · exp(−(sn − sn−1)�)fn exp(−(1 − sn)�)]. (41)

This measure lives on the continuous free loop group [23].
Just as an element ξH of h can be regarded as a vector field on H, so can an element ξ̄H of

�(h), the finite energy free loop space of h endowed with the Hilbert inner product and norm
(as for �(t) in (11) and (12)) be regarded as a vector field on �(H). We denote this vector field
X(ξ̄H ); its action is given by

X(ξ̄H )F (g) = d

dt
F
(
g et ξ̄H )∣∣∣∣

t=0

. (42)

Albeverio and Høegh-Krohn [3] give a quasi-invariant formula which allows us to state that if
ξ̄H is a fixed loop in h then∫

〈dF,X(ξ̄H )〉 dµ =
∫

F divX(ξ̄H ) dµ (43)

for all cylindrical functions F. We consider the connection ∇X(ξ̄H ) = X(∇ ξ̄H ) which allows
us to define higher order Sobolev spaces of the Malliavin type, so that ∇rF belongs to all Lp

spaces. If ∇F is a random element of �((h ⊗ C)) we can define the Sobolev norms

‖F‖r,p =
r∑

i=1

(E[‖∇ iF‖p])
1
p . (44)

We refer to [38, 40, 49, 50] for background on Malliavin calculus; see [46] for the case of a
based loop group.

A k-form σk belongs to all the Sobolev spaces if considered as a random element of the
kth order alternating product of �(h) ⊗ C, because the tangent space of the loop group is
parallelizable.

We consider forms σ = ∑∞
k=0 σk such that

‖σ‖r,p,C =
∞∑

k=0

r∑
i=0

(E[‖∇ iσk‖p])
1
p Ck (45)

is finite. This gives a space of forms which we denote by Wr,p,C(�(H)). The intersection
of all these spaces is denoted by W∞−(�(H)) and called the space of Malliavin test forms
of �(H). The introduction of C is explained in the work of Connes [13] and Jones and
Léandre [24].

Theorem 4.1. W∞−(�(H)) is an algebra under the product ∧.

Proof. Let σ i = ∑∞
k=0 σ i

k , i = 1, 2 be elements of W∞−(�(H)) and define σ 1 ∧ σ 2 =∑∞
k=0 σ

1,2
k where σ

1,2
k = ∑k

k′=0 σ 1
k′ ∧ σ 2

k−k′ . By the Hölder inequality

E[‖∇r (σk′ ∧ σk−k′)‖p]
1
p �

(
r∑

r ′=0

r∑
r ′′=0

E[‖∇r ′
σk′ ‖p1 ]

1
p1 E[‖∇r ′′

σk−k′ ‖p2 ]
1

p2

)
Ck′

1 C
(k−k′)
1 (46)

for some p1 and p2 so that

‖σ 1 ∧ σ 2‖r,p,C � C‖σ 1‖r,p1,C1‖σ 2‖r,p2,C1 (47)

which proves the theorem. �
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Let us recall that classically the action of the exterior derivative of a k-form σk on k + 1
vector fields X1(ξ̄

H
1 ), . . . , Xk+1(ξ̄

H
k+1) is defined as follows:

dσk

(
X1
(
ξ̄H

1

)
, . . . , Xk+1

(
ξ̄H
k+1

)) =
k+1∑
i=1

(−1)i+1∇(σk

(
X1
(
ξ̄H

1

)
, . . . , X̂i

(
ξ̄H
i

)
, . . . , Xk+1

(
ξ̄H
k+1

)))
+

k∑
1=i<j

(−1)i+j σk

( [
Xi

(
ξ̄H
i

)
, Xj

(
ξ̄H
j

)]
X1
(
ξ̄H

1

)
, . . . , X̂i

(
ξ̄H
i

)
, . . . , X̂j

(
ξ̄H
j

)
, . . . , Xk+1

(
ξ̄H
k+1

))
, (48)

wherê denotes omission of a term in a sequence. The following theorem is the main result
of this section.

Theorem 4.2. (a) d acts continuously on W∞−(�(H)) and (b) d2 = 0.

Proof. (a) For fixed loops ξ̄H
1 and ξ̄H

2 the mapping

(�(h) ⊗ C) × (�(h) ⊗ C) → �(h) ⊗ C,
(
X
(
ξ̄H

1

)
, X
(
ξ̄H

2

)) �→ [
X
(
ξ̄H

1

)
, X
(
ξ̄H

2

)]
is continuous and bilinear. We know that

‖dσk‖r,p � ‖σk‖r+1,pCk
1 . (49)

Hence if σ = ∑∞
k=0 belongs to W∞−(�(H)) then

‖dσ‖r,p,C � K‖σ‖r+1,p,C2 (50)

for some C2, which gives the result.
(b) The proof is exactly the same as that for finite-dimensional manifolds, given

definition (48). �

We refer to [4, 42, 45] for various papers on random forms. The operation on W∞−(�(H))

of interior differentiation along X
(
ξ̄H
B

)
is defined algebraically as in the finite-dimensional

case and denoted IB ; the Lie derivative along X
(
ξ̄H
B

)
is denoted by LB and is defined by

LB = [IB, d] . (51)

5. The Weil model of the equivariant cohomology of �(H)

In this section we construct the Weil model for the equivariant cohomology of �(H) under
the pointwise action of �(T ). As in the finite-dimensional case, this action of �(T ) on �(H)

defines an action of �(T ) on W∞−(�(H)) by algebra automorphisms. It also induces an action
of the superalgebra �̃(tC) on W∞−(�(H)), with IB acting by IB, LB by LB and dW by d. The
�(T ) action and the �̃(tC) action intertwine as in (4).

Let T be embedded in H. We wish to define the tensor product space (W.N.)−∞(�(t))
⊗

W∞−(�(H)). We begin by defining the topological space (W.N)−r1,C1(�(t))
⊗

Wr,p,C(�(H)).
Elements of this space have the form

� =
∑

As∈MultindT
s

B a∈MultindT
a

uAs ⊗ θB a

⊗
σAs,B a

, (52)
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where

‖�‖−r1,C1,r,p,C :=
∑

As∈MultindT
s

B a∈MultindT
a

C
(�As+�B s)

1 w−r1(As)w−r1(B a)
∥∥σAs,B a

∥∥
r,p,C

(53)

is finite. Each space (W.N.)−r1,C1(�(t))
⊗

Wr,p,C(�(H)) is a Banach space.
Our space (W.N.)−∞(�(t))

⊗
W∞−(�(H)) is equal to⋂

r,p,c

⋃
r1,C1

(W.N.)−r1,C1(�(t))
⊗

Wr,p,C(�(H))

endowed with its natural topology.

Theorem 5.1. The space W∞−(�(H))
⊗

W∞−(�(H)) is an algebra.

Proof. Let

�1 =
∑

As∈MultindT
s

B a∈MultindT
a

uAs ⊗ θB a

⊗
σ 1

As,B a
and

�2 =
∑

As∈MultindT
s

B a∈MultindT
a

uAs ⊗ θB a

⊗
σ 2

As,B a

(54)

and define

�1 · �2 =
∑

As∈MultindT
s

B a∈MultindT
a

uAs ⊗ θB a

⊗
σ 12

As,B a
(55)

where

σ 12
As,B a

=
∑

A1 s

A2 s

=As,B1 s

B2 s

=B s

ε
B=B1
B2

σ 1
As,B a

σ 2
As,B a

(56)

using the concatenation conventions introduced in section 3. In each term of this equation
wr1

(
A1 s

)
wr1

(
A2 s

) = wr1(As), wr1

(
B1 a

)
wr1

(
B2 a

) = wr1(B a), �A1 s
+ �A2 s

= �As and
�A1 s

+ �B2 a
= �B a . As a result∥∥σ 1

As,B a
∧ σ 2

As,B a

∥∥
r,p,C

� K
∥∥σ 1

As,B a

∥∥
r,p1,C2

∥∥σ 2
As,B a

∥∥
r,p2,C2

(57)

and thus

‖�1 · �2‖−r1,C1,r,p,C �
∑

A1 s
∈MultindT

s ,B1 a
∈MultindT

a ,A2 s
∈Symind,B2 a

∈MultindT
a

C
�A1 s

+�B1 a

1 C
�A2 s

+�B2 a

1

× w−r1

(
A1 s

)
w−r1

(
B1 a

)
w−r1

(
A2 s

)
w−r1

(
B2 a

)
× ∥∥σ 1

As,B a

∥∥
r1,p1,C2

∥∥σ 2
As,B a

∥∥
r2,p2,C2

� K‖�1‖−r1,C1,r1,p1,C2‖�2‖−r1,C1,r1,p2,C2 . (58)

�

On W∞−(�(H))
⊗

W∞−(�(H)) we can define the derivative dW

⊗
Id + Id

⊗
d.
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Theorem 5.2. The operator dW

⊗
Id + Id

⊗
d is continuous on W∞−(�(H))

⊗
W∞−(�(H)).

Proof. We first show that Id
⊗

d is continuous. Suppose that � is in W∞−(�(H))
⊗

W∞−(�(H)), expanded as in (52). Then(
Id
⊗

d
)
� =

∑
As∈MultindT

s

B a∈MultindT
a

uAs ⊗ θB a

⊗
dσAs,B a

. (59)

By the result of section 4,∥∥dσAs,B a

∥∥
r,p,C

� K
∥∥σAs,B a

∥∥
r+1,p,C ′ (60)

so that ∥∥(Id⊗ d
)
�
∥∥

−r1,C1,r,p,C
� K‖�‖−r1,C1,r+1,p,C ′ (61)

and thus Id
⊗

d is continuous.
To show that dW

⊗
Id is continuous, we recall the definition of dW given in (31); as in

section 3 we split dW into two parts dW

⊗
Id = d(1)

W

⊗
Id + d(2)

W

⊗
Id. Noting that∑

As∈MultindT
s

B a∈MultindT
a

∥∥d(1)
W

⊗
Id(uAs ⊗ θB a ) ⊗ σAs,B a

∥∥
−r1,C1,r,p,C

,�
∑

As∈MultindT
s

B a∈MultindT
a

(
w1−r1(As)w1−r1(B a)C̃

(�As+�B a)

1 × ∥∥σAs,B a

∥∥
r,p,C

)
(62)

where C̃1 → 0 when C1 → 0 gives∥∥(d(1)
W

⊗
Id
)
�
∥∥

−r1,C1,r,p,C
� K‖�‖−r1+1,C̃1,r,p,C. (63)

A similar result holds for d(2)
W

⊗
Id. �

We can combine the properties of dW and d to show that

Theorem 5.3. (dW

⊗
Id + Id

⊗
d)2 = 0 on (W.N.)−∞(�(t))

⊗
W∞−(�(H))

and hence we learn that (W.N.)−∞(�(t))
⊗

W∞−(�(H)) is a continuous Z-graded complex.
It is useful to note that (for any B is in Ind �(t))

LB

⊗
Id + Id

⊗
LB = [

dW

⊗
Id + Id

⊗
d, IB

⊗
Id + Id

⊗
IB

]
. (64)

As a result, if we define ((W.N.)−∞(�(t))
⊗

W∞−(�(H)))bas to be the subalgebra of
W∞−(�(H))

⊗
W∞−(�(H)) whose elements � satisfy(
LB

⊗
Id + Id

⊗
LB

)
� = 0 and(

IB

⊗
Id + Id

⊗
IB

)
� = 0 ∀ B ∈ Ind �(t)

(65)

then (
dW

⊗
Id + Id

⊗
d
)(

(W.N.)−∞(�(t))
⊗

W∞−(�(H))
)

bas

⊂ (
(W.N.)−∞(�(t))

⊗
W∞−(�(H))

)
bas.

(66)

This allows us to define the Weil model of the equivariant cohomology of �(H):
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Definition 5.4. The Weil model of the equivariant cohomology of �(H) is the cohomology of
dW

⊗
Id + Id

⊗
d acting on(

(W.N.)−∞(�(t))
⊗

W∞−(�(H))
)

bas.

Given a more general W ∗ algebra A for �(T ) with property C one can show that the
cohomology of (A

⊗
W∞−(�(H)))bas is independent of the choice of A. The arguments to

prove this are the same as those in the finite-dimensional case, being algebraic rather than
analytic.

In the following section we show how two further models of this cohomology may be
constructed.

6. The Kalkman model and the Cartan model of the equivariant cohomology of �(H)

From the algebraic point of view, the constructions in this section of the Kalkman model and
the Cartan model are the same as those given by Kalkman in [25]. We use an isomorphism � of
(W.N.)−∞(�(t))

⊗
W∞−(�(H)) which has the formal expression exp

(∑
B∈Ind �(t) θB

⊗
IB

)
to interpolate between the Weil model and the Kalkman model, and to derive the Cartan model.
However in the infinite-dimensional setting of this paper we must define the operator � in a
form where it can be shown that it acts continuously on W∞−(�(H))

⊗
W∞−(�(H)).

We begin by observing that since T is a closed Lie subgroup of H, we may extend
the orthonormal basis {ξa|a = 1, . . . , m = Dim T } of t to an orthonormal basis {ξa|a =
1, . . . , n = Dim H} of h; the basis

{
ξT
a,i : a = 1, . . . , m, i ∈ Z

}
of �(t) may similarly be

expanded to a basis
{
ξH
a,i : a = 1, . . . , n, i ∈ Z

}
. A typical form σ on �(H) may be expanded

as

σ =
∑

C∈MultindH
a

σC a
ω

C a

H , (67)

where
{
ωB

H

∣∣B ∈ Ind �(h)
}

is the dual basis to
{
ξH
a,i : a = 1, . . . , n, i ∈ Z

}
, so that

‖σ‖r,p,C =
r∑

r ′=0

∞∑
k=0

E


 ∑

B a∈MultindH
a ,�B a=k

∥∥∇r ′
σB a

∥∥2


p

2


1
p

Ck

 . (68)

Now define the operator � on (W.N.)−∞(�(t))
⊗

W∞−(�(H)) by

� =
∑

B∈MultindT
a

�B a
, (69)

where

�B a
=

�B a∏
j=1

θBj

⊗
IBj

. (70)

Also let � belong to W∞−(�(H))
⊗

W∞−(�(H)) with

� =
∑

As∈MultindT
s ,B s∈MultindT

a

uAs ⊗ θB a

⊗
σAs,B a

(71)

as before.
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Expanding � further using the basis of forms ωB
H on �(H) gives

� =
∑

As∈MultindT
s ,B s∈MultindT

a

C s∈MultindH
a

uAs ⊗ θB a

⊗
σAs,B a,C a

ω
C a

H . (72)

so that

�� =
∑

D∈MultindT
a

∑
As∈MultindT

s ,B s∈MultindT
a

C s∈MultindH
a

(−1)�B a�D auAs ⊗ θD a ⊗ θB a

⊗
σAs,B a,C a

ID a
ω

C a

H .

(73)

Hence

‖��‖−r1,C1,r,p,C �
∑

As∈MultindT
s ,B s∈MultindT

a ,D∈MultindT
a

C
�As+�B a+�D a

1 w−r1(As)w−r1(B a)w−r1(D a)

×
r∑

r ′=0

∞∑
k=0

E


 ∑

C a∈MultindH
a ,D a⊂C a,�C a−�D a=k

∥∥∇r ′
σAs,B a,C a

∥∥2


p

2


1
p

Ck

 .

(74)

We observe that

r∑
r ′=0

∞∑
k=0

E


 ∑

C a∈MultindH
a ,D a⊂C a,�C a−�D a=k

∥∥∇r ′
σAs,B a,C a

∥∥2


p

2


1
p

Ck



�
r∑

r ′=0

∞∑
k=0

E


 ∑

C a∈MultindH
a ,�C a=k+�D a

∥∥∇r ′
σAs,B a,C a

∥∥2


p

2


1
p

Ck+�D a


(75)

if C > 1 which we can take to be the case. This will assist us to prove the following theorem.

Theorem 6.1. The operator � is a continuous linear automorphism of (W.N.)−∞(�(t))
⊗

W∞−(�(H)).

Proof. We first show that � is continuous.

‖��‖−r1,C1,r,p,C �
∑

Kw−r1(B̃ a)‖�‖−r1,C1,r,p,C (76)

However if r1 is big enough∑
B a∈MultindT

a

w−r1(B a) �
( ∞∏

l=1

(
1 − 1

|l|r1 + 1

)−1
)m

. (77)

Clearly � is linear. To show that � is an automorphism, we note that formally

� =
∏

B∈Ind �(t)

(
1 + θB

⊗
IB

) = exp

 ∑
B∈Ind �(t)

θB
⊗

IB

 (78)
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which has formal inverse

� ′ = exp

 ∑
B∈Ind �(t)

− θB
⊗

IB

 . (79)

Hence � has a continuous inverse �−1 where

�B a
=

�B a∏
j=1

(−1)�B a θBj

⊗
IBj

. (80)

�

The construction of the operator � allows us to prove that there is a second differential on
(W.N.)−∞(�(t)) ⊗ W∞−(�(H)), which we will denote by dK , with isomorphic cohomology.
This is the content of the following theorem, which shows that in this infinite-dimensional
setting the Kalkman or BRST model [25] of the cohomology can be constructed. In a final
theorem we show (as in [25] in the finite-dimensional case) that there is an analogue of the
Cartan model.

Theorem 6.2

(a) dK = dW

⊗
Id + Id

⊗
d +

∑
θA
⊗

LA − ∑
uA
⊗

IA is a continuous operator on
(W.N.)−∞(�(t)) ⊗ W∞−(�(H))

(b) d2
K = 0.

(c) � is an isomorphism of the cohomology of dW

⊗
Id + Id

⊗
d acting on

((W.N.)−∞(�(t))
⊗

W∞−(�(H)))bas with the cohomology dK acting on the subspace
of (W.N.)−∞(�(t))

⊗
W∞−(�(H)) consisting of elements � which satisfy(

LB

⊗
Id + Id

⊗
LB

)
� = 0 and

(
IB

⊗
Id
)
� = 0 ∀B ∈ Ind �(t). (81)

Proof. The argument here is purely algebraic and is the same as that given in section 2 for the
finite-dimensional case. �

We can also use the arguments in section to establish the equivalence of the Cartan model:

Corollary 6.3. Suppose that (W.N.)−∞(�(t))b is the algebra (W.N.)−∞(�(t)) with all odd
generators set to zero. Then the cohomology of the subalgebra ((W.N.)−∞(�(t))b

⊗
W∞−(�(H)))G of ((W.N.)−∞(�(t))b

⊗
W∞−(�(H))) which consists of elements which are

annihilated by LB

⊗
Id + Id

⊗
LB with respect to the differential dC = Id

⊗
d−∑ uA

⊗
IA

is isomorphic to the equivariant cohomology of �(H) under the �(T ) action.

Finally we observe that provided that a suitable tensor product can be defined the
arguments used in the finite-dimensional case to show that the basic cohomology of A

⊗
�(M)

is independent of the choice of W ∗ algebra A would also be valid in our loop group setting,
and might make it possible to prove an equivariant de Rham theorem.
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